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ABSTRACT

The validity of an extended Rayleigh model for laser generated bubbles in soft tissue is examined.  This model includes
surface tension, viscosity, a realistic water equation of state, material strength and failure, stress wave emission and linear
growth of interface instabilities.   It is compared to detailed dynamic simulations using the computer program LATIS.  These
simulations include stress wave propagation, a realistic water equation of state, material strength and failure, and viscosity.
The extended Rayleigh model and the detailed dynamic simulations are compared using a 1-D spherical geometry with a
bubble in the center and using a 2-D cylindrical geometry of a laser fiber immersed in water with a bubble formed at the end
of the fiber.  Studies are done to test the validity of the material strength and failure, stress wave emission, and the interface
instability terms in the extended Rayleigh model.  The resulting bubble radii, material damage radii, the emitted stress wave
energies, and the size of the interface distortions are compared.  Conclusions are made on the validity of the extended Rayleigh
model and on possible improvements to this model.  The purpose of this study is to investigate the use of the extended
Rayleigh model as a substitute for the detailed dynamic simulations when only limited information is needed.  It is also is
meant to benchmark the detailed dynamic simulations and highlight the relevant physics.  It is shown that the extended
Rayleigh model executes over 300 times faster on a computer than the detailed dynamic simulations.

Keywords:  bubble, stress wave, material failure, acoustic radiation, simulation

2.  INTRODUCTION

There has been recent interest in using the stress caused by the expansion of a small vapor bubble to precisely cut
biological tissues.1  The bubble is formed either by the absorption of laser light or by an electrical discharge.  Such bubbles
are similar to cavitation bubbles, whose study has a long rich history, including work in the 1940’s, prompted by the U.S.
Navy’s need to understand the mechanics of cavitation bubbles that were damaging their propellers.2  One of the results of
this research was an enhanced Rayleigh model for the bubble evolution and stability.  

It is important to know the most efficient way to cut a specified amount of material with laser produced bubbles.  The
high efficiency is needed to minimize the amount of residual heat which can cause unwanted damage.  Detailed dynamic
simulations can take too long to do comprehensive parameter studies.  We were therefore motivated to further extend the
Rayleigh model to include material strength and failure and to correctly account for the emitted acoustic energy.  The latter
because it is a significant sink for energy that would otherwise end up as bubble expansion energy.  The advantage of a
extended Rayleigh model (ERM) over a more detailed dynamic simulation is speed.  The extended Rayleigh model is a second
order ODE for the bubble radius.  In contrast, the detailed dynamic simulations are a solution of a set of partial differential
equations.  Although the ERM is more efficient, it does not give information such as the detailed evolution of the stress wave
or shock once it is emitted.  It also does not take into account any internal structure of the bubble or the more complicated
models of material failure.  Because of the limitations, it is necessary to compare the ERM to the more detailed dynamic
simulations and to verify that the assumptions are valid.



3.  EXTENDED RAYLEIGH MODEL

The ordinary differential equation (ODE) describing the temporal evolution of the bubble is based on the work of
Rayleigh, Plesset, and Gilmore.2  We have modified the equation to correctly account for the partial reflections of stress
waves at the surface of the bubble, and material strength and failure.  This model assumes that there are two regions:  the
interior of the bubble and the exterior.  The second order ODE for the position of the bubble wall, R, is
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The pressure is given by the equation
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The Kirkwood-Bethe approximation has been made in obtaining this equation.  This is an assumption that h R+ ˙ /2 2 is
propagated by a wave equation with velocity cs+ Ṙ away from the bubble-solid boundary.  This approximation should be
valid for weak shocks [that is bubble wall Mach number = R/cs

˙ ( )≤ O 1 ].  One can expect it to break down for strong shocks.
Modifications of the propagation velocity to account for the shock propagation is the subject of our future research.  We have
also added the factor F  to account for partial reflection of the stress wave (or weak shock) at the bubble-solid interface.  Note
that for small Mach number F c c cs s s s b b= +ρ ρ ρ/( ).  This shows a complete reflection of the ingoing wave (i.e., F = 1) for
ρ ρb b s sc c<< ; and a complete transmission of the ingoing wave (i.e., F = 0 5. ) for ρ ρb b s sc c= .

The material strength and failure has been included by the radial stress term Y R t( ){ }( )  which is a function of the
complete time history of the bubble wall R t( ){ } .  To obtain the expression for this stress it is assumed that the solid is
locally perfectly elastic with a shear modulus of µ  and is incompressible.3  When the failure stress Y0  is exceeded, the
material fails completely and the local stress goes to zero.  This gives the expression
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The behavior of the radial stress over a loading cycle is shown in Fig 1.  The solid acts perfectly elastically as the strain
of the bubble wall e R R R= −2 0( ) /  increases.  When the failure stress is reached the material starts to fail out to a radius Rd
so that the stress remains clamped at Y0 .  As the strain is decreased, the material as a whole acts again as a perfectly elastic
solid with a reduced shear modulus due to the irreversible material failure.

Y0

Y

Y0 / 2 µ e

Fig. 1.  Stress-strain behavior for material failure model.

The linear growth of the interface instability (commonly called a Rayleigh-Taylor instability) can be determined once
R t( ) is known.4  The following second order ODE determines the perturbation amplitude ζ l  of the spherical harmonic with
mode number l
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The eigenvalues of this equation are given by

γ l lR R R R A± = − ± ( ) +3 2 3 2
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where the evolution scales like ζ γl l t~ exp( )± .  This implies that the system is stable to interface (shape) instabilities when

Re( )γ l + < 0 .  For ρ ρb s<< , l >> 1 and neglecting the Ṙ curvature terms one finds that

γ σ ρl slR R l R+ −~ ˙̇ / /3 3 . (7)

The motion will be unstable when ˙̇R > 0 (that is when the bubble is near its minimum radius).  The effect of surface tension
is to stabilize the large l  number modes yielding a most unstable mode of



l R R smax ~ ˙̇ /ρ σ . (8)

4.  LATIS MODEL

Enhancements have been made to the computer code, LATIS (an acronym for LAser TISsue) developed at Lawrence
Livermore National Laboratory.5  In addition to the physics that was previously in the code (laser propagation, laser energy
deposition, hydrodynamics, atomic physics, radiation absorption, radiation emission, radiation transport, and thermal
transport), we have added material strength and failure.

There are three equations that are used to advance the velocities, strains, and then the stresses in succession.  The first is
the dynamic equation (a generalization of the fluid momentum equation) given by
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cylindrical coordinates, r  and z , are used.  The second is the kinematic equation (a generalized equation of continuity) given
by
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t
e = deviatoric strain tensor , and θ = fractional volume change .  The third equation is a generalization of Hooke’s law given
by

  − + = − + − +˙ ˙
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The values of the inelastic changes to the strains and volume are chosen such that the pressure relaxes to the minimum
pressure Pm  if it is less than Pm  and to zero if it is greater than zero, and that the deviatoric stress invariant

  Y S S= 2 3
t t

: / (11)

relaxes to its limit Y Pe e( )  for values greater than Y Pe e( ) , where the effective pressure is
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The yield surface Y Pe e( )  used is shown schematically in Fig. 2.
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Fig. 2.  Yield surface, Y Pe e( ) .



The inelastic change θin  is limited so that the inelastic volume, Vin , will be between zero and the total volume, V .  All the
deviatoric stresses are scaled by the same factor so that Y  will have the desired value.

The damage index, ε D , is calculated as
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where e0  is the shear strain threshold and θ0  is the tensile strain threshold.  These thresholds are the critical points where the
disconnected flaws (such as voids or cracks) coalesce into a large one and the material “breaks”.  The plastic strain is defined as
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The index for tensile failure is θin  – the maximum percentage void volume, max( / )V Vin  if the tensile damage is not allowed
to heal, and V Vin /  if the tensile damage is allowed to heal.   The density used to calculate the pressure is taken to be the
mass in the zone divided by the volume of the cell that is not void, V Vin− .

The effect of the damage is to decrease both the minimum pressure Pm  and the shear yield limit Yeo  to Pmo D( )1 − ε  and
Yeoo D( )1 − ε  respectively.  Here Pmo  and Yeoo  are constants that characterize the nucleation of the microscopic defects which
cause the material failure.  This leaves one with the following expressions for the time derivatives for the inelastic strains
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where the relaxation time is governed by the equation
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and the basic relaxation time is
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The first term is the sound transit time across the zone and prevents an instability in the numerical integration of the
equations of motion.  The second term is a zonal user supplied time that accounts in an empirical way for the rate dependence
of the material failure.  The relaxation of τ  from τ o to 0 when ε D = 1 helps model the coalescence of voids.  The time



constant should be chosen to be the characteristic time for the disconnected flaws to grow from the size on which they are
nucleated to the size of the inter-flaw spacing.

The bulk modulus is derived from the EOS.  The shear modulus is supplied by the user.  Two different EOS’s for water
were used in this work.  The first is a table calculated using QEOS.6  This table is valid over a large range in both
temperature and density but is not very accurate around the vapor dome.  The second EOS was based on the NBS steam tables.
Although this table is very accurate around the vapor dome it has a limited range of validity.7

5.  RESULTS OF STRESS WAVE EMISSION SIMULATIONS

A 1-D spherical simulation is used to compare the stress wave emission of the extended Rayleigh model to the detailed
dynamic simulations.  This geometry is shown in Fig. 3.  A sphere of water at liquid density and pressure of 10 bar is
instantaneously heated up to a temperature of T b0 .   The QEOS equation-of-state is used for the water and there is no surface
tension or viscosity.  The radius as a function of time is monitored as well as the energy that is emitted during the initial
expansion and during the first collapse.  The results are shown in Figs. 4 and 5.  The temporal histories of the bubble radii
compare quite well.  Both models show no bounce of the bubble for an initial temperature of 200°C, only one bounce for
300°C, and many bounces for 400°C and 500°C.  The maximum bubble radius for the first expansion for the extended
Rayleigh model is 20% less than for the LATIS simulations, see Fig. 5a, but there is the same trend of increase of the
maximum radius as the bubble temperature is increased.  The discrepancy in the bubble radius disappears for the second
expansion.  Both the magnitude and the functional form of the maximum bubble radius match quite well.  The efficiency of
acoustic radiation during the initial expansion and during the first collapse, Fig. 5b, show the same trends as the maximum
bubble radius – there is more energy radiated by the extended Rayleigh model during the first expansion but less during the
first collapse.

51 µm

T
0b

T
0
 = 17°C

Fig. 3.  Simulation geometry.
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Fig. 4.  Bubble radius as a function of time for (a) the ERM and (b) for
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6.  RESULTS OF MATERIAL FAILURE SIMULATIONS

The material strength and failure term in the ERM is tested using the same 1-D spherical geometry shown in Fig. 3.
The initial bubble temperature used is 400°C for all the simulations in this section.  The EOS is based on the NBS steam
tables.  The first case is with no material strength or failure.  The ambient pressure P0  is 10 bar.  The results are shown in
Fig. 6.  The agreement between the ERM and LATIS is good.  For the second case, the ambient pressure is reduced to P0 =1
bar, the shear modulus µ is set to 300 bar, the shear failure stress Y0  to 10 bar and the shear failure strain e0  to 8x10-5.
These parameters model a perfectly elastic material which fails immediately and completely when the failure stress is
exceeded.  The results for the two models are shown in Fig. 7.  Both the results for radius of the bubble and for the maximum
radius to which the material has completely failed agree well.  Also note that the maximum bubble radius is approximately
equal for the first two cases.  The material strength and failure has acted as an effective ambient pressure of 10 bar.  For the
final case, the complete failure is delayed by using a failure strain e0  of 0.24.  This is done only for a LATIS simulation.
There is no way to do the equivalent simulation using the ERM.  Figure 8 displays three curves giving the results of  this
simulation.  The first is the bubble radius.  The maximum radius is reduced 30% by delayed coalescence which has raised the
effective applied pressure above 10 bar.  The second curve is the radius to which the material has completely failed.  The third
curve delineates the dividing line between the region of partial failure and no failure.  Fig. 9 shows examples of typical stress-
strain curves for the three regions shown in Fig. 8.  The first is that of a perfectly elastic stress-strain curve (undamaged
material).  The second is that of material that has started to undergo failure but has not yet totally failed.  The final curve is
that of material that has totally failed and will no longer support any stress.
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material which has totally failed.

The next three figures, Figs. 10 thru 12, show the details of the evolution of the of the three LATIS simulations just
discussed.  Three quantities are displayed.  The first is three times the density.  The factor of three is chosen for convenience
of display.  The other two quantities are the pressure P and the negation of the radial stress −Srr  plotted as the logarithm
base 10 of the quantities.  Negative quantities correspond to negative values of the quantities.  The first case, Fig. 10, shows
the pressure wave moving away from the bubble.  It leaves behind the pressure profile predicted by the Rayleigh model.  Note
the small shelf in density on the edge of the bubble at 0.2 µs.  This shelf could act as an acoustic anti-reflective coating
causing more stress energy to enter the bubble and be available for bubble motion.  This may be responsible for the larger
bubble seen in the LATIS simulations of Fig. 4.  The second case demonstrates the effect of material strength and failure.  As
the acoustic wave moves away from the bubble, it has a much greater pressure than radial stress.  This is because of the small
shear modulus, 300 bar, compared to the bulk modulus of water, 22 kbar.  The radial shear stress is still enough in this wave
to fail the material out to 200 µm as evidenced by the zero value of the radial stress out to this radius at 0.2 µs.  For longer



times the stress builds up to the failure stress of 10 bar as one approaches the bubble.  At this point the material can no
longer support radial stress since it fails and the stress is transferred to a pressure of 10 bar which is communicated to the
bubble wall (see the plot at 9.5 µs).  Also note that the radial stress is equivalent to the magnitude of the pressure for the
latter time bubble evolution seen in Fig. 11c.  The radius of damaged material is extended to almost 1 mm by the bubble
motion.  The final case, Fig. 12, demonstrates the effect of gradual failure.  The stress pulse propagates out of the problem
causing some degree of damage to a 250 µm radius.  This can be noted by the radial stress being clamped at 10 bar in Fig.
12b.  During the longer time bubble evolution, Fig. 12c, one can see the radial stress build up to a maximum value of 10 bar
as the bubble wall is approached from large radii.  As one further approaches the bubble wall this stress decreases to zero as
the material totally fails and the stress is transferred to a pressure of 20 bar that is communicated to the bubble wall.  It is this
increased pressure which is responsible for the decreased bubble radius.
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Fig. 10.  Density ( ρ , solid line), pressure ( P, dashed line) versus
radius.  Density is multiplied by three with units of gm/cc.  The

pressure is displayed as log10( P), where P is in bar.  Each panel is a
snapshot of the time indicated.  The arrows indicate direction of motion.

The material parameters are:  P0 =10 bar, µ=0, Y0 =0.
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Fig. 11.  Density ( ρ , solid line), pressure ( P, dashed line), and radial
stress ( −Srr , dotted line) versus radius.  Density is multiplied by three
with units of gm/cc.  The pressure is displayed as log10( P), where P is

in bar.   The radial stress is displayed as log10( −Srr ), where Srr  is in
bar.  Each panel is a snapshot of the time indicated.  The arrows

indicate direction of motion.  The material parameters are: P0 =1 bar,
µ=300 bar, Y0 =10 bar, e0=8x10-5.
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Fig. 12. Density ( ρ , solid line), pressure ( P, dashed line), and radial
stress ( −Srr , dotted line) versus radius.  Density is multiplied by three
with units of gm/cc.  The pressure is displayed as log10( P), where P is

in bar.   The radial stress is displayed as log10( −Srr ), where Srr  is in
bar.  Each panel is a snapshot of the time indicated.  The arrows

indicate direction of motion.  The material parameters are: P0 =1 bar,
µ=300 bar, Y0 =10 bar, e0=0.24.

7.  RESULTS OF INTERFACE INSTABILITY SIMULATIONS

The growth of interface instabilities was studied using the same geometry shown in Fig. 3.  The ambient pressure P0
was 1 bar, the initial bubble temperature was 500°C, the surface tension σ  was 70 erg/cm2, and the equation of state was
QEOS.  Without instability, the bubble bounces more than 10 times.  The growth of the instabilities is shown in Fig. 13.
The l =10 mode grows more than a decade during each collapse of the bubble.  The l =100 mode is stabilized by the surface



tension which resists surface perturbation.  The behavior of the instability as a function of mode number is demonstrated in
Fig. 13b.  The maximum instability is for l =10 as predicted by Eq. 8.

The instability model in the ERM is benchmarked qualitatively against a 2-D LATIS simulation.8  The geometry for the
ERM is shown in Fig. 14.  Outside of a 50 µm hard core, 0.312 J of energy are deposited into a 12 µm shell.  This geometry
reproduces both the initial surface area and volume of the 2-D calculation.  The size of the l =1 mode is shown to grow by
more than a decade during the collapse in Fig. 15.  This corresponds to the Rayleigh-Taylor bubble and spike behavior seen in
the 2-D simulation (Fig. 16b).  In this LATIS simulation, 0.312 J of energy is deposited in a 12 µm layer at the end of the
laser fiber.  The presence of the fiber will seed an l =1 mode with an initial perturbation of at least a few percent.  This grows
into a classic bubble and spike9 with Kelvin-Helmhotz rolloff (a shear instability).
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Fig. 13.  Growth of the interface instability.  Shown is the size of the
mode normalized by its initial amplitude ζ ζl l/ 0 .  (a) size of modes

versus time. (b)  Amplitude of mode at t=100 µs versus mode number.
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Fig. 14.  Geometry used for the ERM to compare to the 2-D LATIS
simulations.
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Fig. 15.  Growth of the interface instability as a function of time as
predicted by the ERM.  This is for the geometry shown in Fig. 14.

Point A corresponds to the 2-D LATIS simulation in Fig. 16a.  Point
B corresponds to the 2-D LATIS simulation in Fig. 16b.
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8.  DISCUSSIONS AND CONCLUSIONS

Three components of the physics contained in the ERM of bubble evolution were benchmarked against LATIS
simulations – acoustic radiation, material strength and failure, and interface instability.  Good agreement was found for all
three.  It was also found that taking into account partial reflection of the acoustic wave at the bubble interface is important to
find agreement between the ERM and LATIS.  Material strength and failure was found to act as an increased ambient pressure,
where the effective pressure is the shear failure stress of the material.  This is manifested as smaller maximum bubble radii
and shorter bubble oscillation periods.  The bubble was found to be significantly unstable to interface instabilities on collapse
– the magnitude of the oscillation growing a decade per collapse.  All modes up to l =10 were found to be significantly
unstable.  There are two important seeds for these instabilities.  The first is the laser fiber which will seed a significant l =1
mode of at least a few percent in initial amplitude.  The second is the presence of an material interface such as a vessel wall.
The reflection of the acoustic radiation off of this interface and the subsequent imprint of this wave on the bubble motion
when it impinges on the vessel wall would be expected to seed a significant l =2 mode.  Since these modes will grow about a
decade per collapse it is unlikely that the bubble will be able to bounce more than once as a well defined spherical bubble.  It
was found that the ERM model executed 300 times faster than LATIS on equivalent computers, shortening the time to run a
simulation from days to minutes.  The extended Rayleigh model with measured physical parameters can now be used to
design medical therapies.  It enables quick exploration of design parameter space to determine optimal treatment protocols.
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